Sums of finite products of Genocchi functions
نویسندگان
چکیده
منابع مشابه
Sums of finite products of Genocchi functions
In a previous work, it was shown that Faber-Pandharipande-Zagier and Miki’s identities can be derived from a polynomial identity which in turn follows from a Fourier series expansion of sums of products of Bernoulli functions. Motivated by this work, we consider three types of sums of finite products of Genocchi functions and derive Fourier series expansions for them. Moreover, we will be able ...
متن کاملFourier series of finite products of Bernoulli and Genocchi functions
In this paper, we consider three types of functions given by products of Bernoulli and Genocchi functions and derive some new identities arising from Fourier series expansions associated with Bernoulli and Genocchi functions. Furthermore, we will express each of them in terms of Bernoulli functions.
متن کاملOn functions defined by sums of products of Bessel functions
Received 28 June 2007, in final form 13 November 2007 Published 12 December 2007 Online at stacks.iop.org/JPhysA/41/015207 Abstract Various functions, defined as infinite series of products of Bessel functions of the first kind, are studied. Integral representations are obtained, and then used to deduce asymptotic approximations. Although several methods have been investigated (including power ...
متن کاملSeries of sums of products of higher-order Bernoulli functions
It is shown in a previous work that Faber-Pandharipande-Zagier's and Miki's identities can be derived from a polynomial identity, which in turn follows from the Fourier series expansion of sums of products of Bernoulli functions. Motivated by and generalizing this, we consider three types of functions given by sums of products of higher-order Bernoulli functions and derive their Fourier series ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2017
ISSN: 1687-1847
DOI: 10.1186/s13662-017-1325-9